- Ο Πλούταρχος αναφέρει στο έργο του Ερωτήσεις “Πῶς Πλάτων ἔλεγε τόν θεόν ἀεί γεωμετρεῖν.”Από αυτή τη φράση προκύπτει ο μνημονικός κανόνας “Αεί ο Θεός ο μέγας γεωμετρεί” όπου ο αριθμός των γραμμάτων δείχνει το αντίστοιχο ψηφίο του αριθμού π, με προσέγγιση 5 δεκαδικών ψηφίων (3,14159).
- Αεί = 3
- ο = 1
- Θεός = 4
- ο =1
- μέγας = 5
- γεωμετρεί = 9
Σε νεότερους χρόνους, αποδίδεται ότι την συμπλήρωσε ο καθηγητής Μαθηματικών στο Πανεπιστήμιο Αθηνών Ν. Χατζιδάκης (1872-1942),έχει χρησιμοποιηθεί μεγαλύτερη πρόταση για περισσότερα ψηφία “Αεί ο Θεός ο Μέγας γεωμετρεί, το κύκλου μήκος ίνα ορίση διαμέτρω, παρήγαγεν αριθμόν απέραντον, καί όν, φεύ, ουδέποτε όλον θνητοί θα εύρωσι”.
το οποίο αντιστοιχεί στην παρακάτω δεκαδική προσέγγιση του π
3,1415926535897932384626.
Παρατηρούμε ότι στο παραπάνω τετράστιχο ο Νικόλαος Χατζηδάκης επέκτεινε περίτεχνα την γνωστή φράση του Πλάτωνος «Αεί ο Θεός γεωµετρεί» και δηµιούργησε αυτό το αριστοτέχνηµα στο οποίο προσπαθεί να περιγράψει τον αριθµό π. Αξίζει να αναφερθεί ότι ο Πλάτων έτρεφε µεγάλη εκτίµηση προς τα Μαθηµατικά και αναγνωρίζοντας την µεγάλη εκπαιδευτική αξία των Μαθηµατικών και ιδιαίτερα της Γεωµετρίας είχε γράψει στην είσοδο της Ακαδηµίας την επιγραφή: «Μηδείς αγεωµέτρητος εισίτω…».
Ο αριθμός π ( ή η σταθερά του Αρχιµήδη) είναι μια μαθηματική σταθερά οριζόμενη ως ο λόγος της περιφέρειας προς τη διάμετρο ενός κύκλου, ενώ με ακρίβεια οκτώ δεκαδικών ψηφίων είναι ίση με 3,14159265. Ο λόγος αυτός είναι σταθερός και ανεξάρτητος από το μέγεθος του κύκλου. Για παράδειγμα, αν ένας κύκλος έχει διπλάσια διάμετρο, αυτός θα έχει και διπλάσια περιφέρεια, διατηρώντας το λόγο σταθερό.
Ο π είναι ένας άρρητος αριθμός, κάτι που σημαίνει ότι δεν μπορεί να εκφραστεί ακριβώς ως λόγος δύο ακεραίων (όπως 22/7 ή άλλα κλάσματα που χρησιμοποιούνται συνήθως για την προσέγγιση του π)· κατά συνέπεια, η δεκαδική απεικόνιση δεν τελειώνει ποτέ και ποτέ δεν εγκαθίσταται σε μια μόνιμη και επαναλαμβανόμενη παράσταση. (Το 1767 ο Γιόχαν Χάινριχ Λάµπερτ απέδειξε ότι ο π είναι άρρητος αριθµός)
Τα ψηφία φαίνεται να εμφανίζονται με τυχαία σειρά, αν και δεν έχει ανακαλυφθεί ακόμη κάποια απόδειξη για αυτό. Ο π είναι ένας υπερβατικός αριθμός, δηλαδή δεν αποτελεί ρίζα ενός μη-μηδενικού πολυωνύμου με ρητούς συντελεστές ( όπως αποδείχτηκε το 1882 από τον Ferdinand von Lindemann). Αυτό έχει ως συνέπεια ότι ο π δεν είναι κατασκευάσιμος αριθμός, δηλ. δεν μπορεί να κατασκευαστεί με κανόνα και διαβήτη. Κατά συνέπεια είναι αδύνατο να τετραγωνίσουμε τον κύκλο, που σημαίνει ότι δεν μπορούμε με κανόνα και διαβήτη να κατασκευάσουμε ένα τετράγωνο που να έχει εμβαδό ίσο προς το εμβαδό του δεδομένου κύκλου (το αρχαίο πρόβλημα του τετραγωνισμού του κύκλου με κανόνα και διαβήτη).
Οι παλαιότερες γραπτές προσεγγίσεις του π βρίσκονται στην Αίγυπτο και τη Βαβυλώνα, απέχουν ένα τοις εκατό από την πραγματική αξία. Στη Βαβυλώνα, ένας δίσκος της χρονολογείται το 1900–1600 π.Χ. έχει μια γεωμετρική δήλωση που, κατ’επέκταση, αντιμετωπίζει τον π ως 25/8 = 3.1250. Στην Αίγυπτο, ο Πάπυρος Rhind , χρονολογείται γύρω στο 1650 π.Χ., αλλά έχει αντιγραφεί από ένα έγγραφο που χρονολογείται το 1850 π.Χ. έχει ένα τύπο που την αντιμετωπίζει την σταθερά π ως (16/9)2 ≈ 3.1605.